比表面积500-1500灰分5碘值500-1500四氯化碳35-65
山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。
临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。 地址:山东临朐县冶源镇西圈村
废气处理活性炭以外的吸附剂来看,硅胶、活性氧化铝对于具有碱性或者极性强的分子结构的气体显示出亲和性,并很容易受到由于它们对水蒸气强烈地吸附而形成的妨碍,所以对所有的有机气体的吸附力都很弱,废气处理活性炭可以说是用途广的一种吸附剂。 活性炭是用途广的一种吸附剂,吸附流程有以下三种形式。 (1)间歇式流程常用单个吸附器。应用于废气间歇排放、排气量较小、排气浓度较低的情况。吸附饱和后需要再生。当间歇排气的间隔时间大于再生所用的时间,可在吸附器内再生;当间歇排气时间小于再生所用时间时,可将吸附器内的活性炭更换,将失效活性炭集中再生。 (2)半连续式流程由两台并联组成。普遍应用的流程,既可用于处理间歇排气,又可用于连续排气。其中一台吸附器进行吸附,另一台吸附器进行再生。 (3)连续式流程由连续操作的流化床吸附器、移动床吸附器等组成、处理连续排出废气,不断有用过的废气处理活性炭移出床外再生,并不断有新鲜的活性炭或再生的活性炭补充到床内。

临朐海源活性炭厂建厂多年以来,一直秉承产品质量为主,客户信赖为本,诚信,互利互惠的原则,积累了全国各地固定客户,赢得了良好的口碑,欢迎您的到来。
我厂生产的废气处理活性炭,空隙发达,吸附率高,强度好,具有耐水、防火、放油等特点。 废气处理活性炭物理活化法 物理法通常又称气体活化法,是将已炭化处理的原料在800 ~1000℃的高温下与水蒸气,烟道气(水蒸气、CO2、N2等的混合气)、CO或空气等活化气体接触,从而进行活化反应的过程。物理活化法的基本工艺过程主要包括炭化、活化、除杂、破碎(球磨)、精制等工艺,制备过程清洁,液相污染少。
在制备过程中,具有氧化性的高温活化气体无序碳原子及杂原子先发生反应,使原来封闭的孔打开,进而基本微晶表面暴露,然后活化气体与基本微晶表面上的碳原子继续发生氧化反应,使孔隙不断扩大。一些不稳定的炭因气化生成CO、CO2、H2和其他碳化合物气体,从而产生新的孔隙,同时焦油和未炭化物等也被除去,终得到废气处理活性炭产品。
废气处理活性炭发达的比表面积则源自中孔、大孔孔容的增加,形成的大孔、中孔和微孔的相互连接贯通。由于物理法工艺流程相对简单,产生的废气以CO2和水蒸气为主,对环境污染较小,而且终得到的活性炭产品比表面积高、孔隙结构发达、应用范围广,因此世界范围内的活性炭生产厂家中70%以上都采用物理法生产活性炭。炭活化过程中产生大量的余热,可满足原料烘干、余热锅炉制高温蒸汽、产品的洗涤烘干等所需热能。 物理-化学活化法 物理-化学一体化制备技术 物理-化学活化法顾名思义就是结合应用物理活化和化学活化的方法,即炭先经化学法处理,随后再进一步用物理法(水蒸气或 CO2)活化。国外研究人员通过H3PO4和CO2联合活化法制得了比表面积高达3700m2/g 的活性炭,具体步骤是在85℃下先用H3PO4浸泡木质原料,经450℃炭化4h后再用CO2活化。将物理法和化学法联合,利用物理法的炭化尾气为化学法生产供热,实现生产过程无燃煤消耗,同时得到物理法活性炭和化学法活性炭。 微波化学活化 由于在活性炭制备过程中,传统的炉膛加热存在耗工、耗时且物料受热不均的缺点,因此微波的引入可以实现物料内部均匀加热,同时可方便地快速启动和停止,耗时比传统工艺短得多。因此,微波化学活化可以显著缩短生产时间,从而大地提高生产效率,亦可降低环境污染。

临朐县海源活性炭厂位于山东临朐县冶源镇西圈村,以废气处理活性炭为主业;不断科研投入,产品种类,质量稳定,深受广大客户好评,由于其良好的吸附性和可再生性,在市场上得到了广泛的应用。废气处理活性炭能否燃烧呢?是肯定的,其在高温下可以进行燃烧反应,但是其燃烧温度比一般的燃烧材料要高,需要达到,800℃以上。
因此,一般情况下,废气处理活性炭不易发生燃烧反应,如果废气处理活性炭与氧气等质混合在一起,那么就可能产生火源或引燃,那么就可能产生火源或引燃。所以在使用废气处理活性炭时,需要注意其周围环境的安全,避免发生安全事故。,但在正常使用过程中一般发生燃烧反应。要确保其安全使用,需要了解其使用规范,需要了解其使用规范和相关注意事项,常用于污水处理,特别是在海水淡化工艺中应用广泛,能够在水中长时间保持稳定的性能,同时具有的吸附能力,可以有效地去除水中的有机物、颜色、异味等杂质。

废气处理中使用活性炭通常具有较好的效果,主要体现在以下几个方面:
1. 广泛的吸附能力:活性炭能够吸附多种有机和无机污染物,包括挥发性有机化合物(VOCs)、异味气体、苯系物、醛类、酮类等。
2. 高吸附容量:具有较大的比表面积和丰富的孔隙结构,使其能够吸附大量的废气污染物。
3. 去除:对许多废气成分能达到较高的去除效率,显著降低废气中的污染物浓度。
4. 操作简单:安装和使用相对简便,维护成本相对较低。
然而,活性炭废气处理也存在一些局限性:
1. 饱和问题:随着吸附过程的进行,活性炭会逐渐饱和,需要定期更换或再生,否则会影响处理效果。
2. 再生成本:再生过程可能较为复杂,成本较高。
3. 湿度影响:对湿度较为敏感,高湿度环境可能会降低其吸附性能。
4. 易燃性:在某些情况下,活性炭可能存在燃烧的风险,需要采取相应的安全措施。
总体而言,在合适的条件下和正确的应用中,活性炭在废气处理方面可以发挥重要作用,但需要综合考虑其优点和局限性,以达到佳的废气处理效果。

废气处理中使用的活性炭通常可以再生。
活性炭再生的方法包括热再生、化学药剂再生、生物再生等。
热再生是通过高温加热使吸附在活性炭孔隙中的有机物分解、挥发,从而恢复活性炭的吸附能力。
化学药剂再生则是利用化学试剂与吸附质发生反应,将其从活性炭上脱附下来。
然而,活性炭的再生效果可能会受到多种因素的影响,例如活性炭的使用时间、吸附物质的性质和浓度、再生工艺的条件等。经过多次再生后,活性炭的吸附性能可能会逐渐下降。
此外,再生过程本身也需要一定的成本和技术条件。

废气处理活性炭再生的成本相对较高。
再生成本受到多种因素的影响,包括但不限于以下方面:
1. 再生工艺的复杂程度:不同的再生方法,如热再生、化学再生等,其工艺和设备要求不同,成本也有差异。
2. 活性炭的使用情况和污染程度:如果活性炭吸附的污染物种类复杂、浓度高,再生难度增大,成本相应提高。
3. 再生设备和设施的投资:需要配备的再生设备和设施,这部分初始投资较大。
4. 能源消耗:再生过程中的加热、化学反应等环节需要消耗大量的能源。
5. 人力和运营管理成本:包括操作人员的工资、培训以及设备的维护和管理费用。
然而,与直接购买新的活性炭相比,活性炭再生在一定程度上可以降低长期的总体成本,并减少资源浪费和环境压力。但具体的成本高低还需根据实际情况进行详细评估和核算。